0=12x^2+84x+7

Simple and best practice solution for 0=12x^2+84x+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=12x^2+84x+7 equation:


Simplifying
0 = 12x2 + 84x + 7

Reorder the terms:
0 = 7 + 84x + 12x2

Solving
0 = 7 + 84x + 12x2

Solving for variable 'x'.

Combine like terms: 0 + -7 = -7
-7 + -84x + -12x2 = 7 + 84x + 12x2 + -7 + -84x + -12x2

Reorder the terms:
-7 + -84x + -12x2 = 7 + -7 + 84x + -84x + 12x2 + -12x2

Combine like terms: 7 + -7 = 0
-7 + -84x + -12x2 = 0 + 84x + -84x + 12x2 + -12x2
-7 + -84x + -12x2 = 84x + -84x + 12x2 + -12x2

Combine like terms: 84x + -84x = 0
-7 + -84x + -12x2 = 0 + 12x2 + -12x2
-7 + -84x + -12x2 = 12x2 + -12x2

Combine like terms: 12x2 + -12x2 = 0
-7 + -84x + -12x2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(7 + 84x + 12x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(7 + 84x + 12x2)' equal to zero and attempt to solve: Simplifying 7 + 84x + 12x2 = 0 Solving 7 + 84x + 12x2 = 0 Begin completing the square. Divide all terms by 12 the coefficient of the squared term: Divide each side by '12'. 0.5833333333 + 7x + x2 = 0 Move the constant term to the right: Add '-0.5833333333' to each side of the equation. 0.5833333333 + 7x + -0.5833333333 + x2 = 0 + -0.5833333333 Reorder the terms: 0.5833333333 + -0.5833333333 + 7x + x2 = 0 + -0.5833333333 Combine like terms: 0.5833333333 + -0.5833333333 = 0.0000000000 0.0000000000 + 7x + x2 = 0 + -0.5833333333 7x + x2 = 0 + -0.5833333333 Combine like terms: 0 + -0.5833333333 = -0.5833333333 7x + x2 = -0.5833333333 The x term is 7x. Take half its coefficient (3.5). Square it (12.25) and add it to both sides. Add '12.25' to each side of the equation. 7x + 12.25 + x2 = -0.5833333333 + 12.25 Reorder the terms: 12.25 + 7x + x2 = -0.5833333333 + 12.25 Combine like terms: -0.5833333333 + 12.25 = 11.6666666667 12.25 + 7x + x2 = 11.6666666667 Factor a perfect square on the left side: (x + 3.5)(x + 3.5) = 11.6666666667 Calculate the square root of the right side: 3.415650255 Break this problem into two subproblems by setting (x + 3.5) equal to 3.415650255 and -3.415650255.

Subproblem 1

x + 3.5 = 3.415650255 Simplifying x + 3.5 = 3.415650255 Reorder the terms: 3.5 + x = 3.415650255 Solving 3.5 + x = 3.415650255 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.5' to each side of the equation. 3.5 + -3.5 + x = 3.415650255 + -3.5 Combine like terms: 3.5 + -3.5 = 0.0 0.0 + x = 3.415650255 + -3.5 x = 3.415650255 + -3.5 Combine like terms: 3.415650255 + -3.5 = -0.084349745 x = -0.084349745 Simplifying x = -0.084349745

Subproblem 2

x + 3.5 = -3.415650255 Simplifying x + 3.5 = -3.415650255 Reorder the terms: 3.5 + x = -3.415650255 Solving 3.5 + x = -3.415650255 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.5' to each side of the equation. 3.5 + -3.5 + x = -3.415650255 + -3.5 Combine like terms: 3.5 + -3.5 = 0.0 0.0 + x = -3.415650255 + -3.5 x = -3.415650255 + -3.5 Combine like terms: -3.415650255 + -3.5 = -6.915650255 x = -6.915650255 Simplifying x = -6.915650255

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.084349745, -6.915650255}

Solution

x = {-0.084349745, -6.915650255}

See similar equations:

| 14y-8=13 | | Ln(x+8)+ln(x-2)=2lnx | | 4.3h+12=5.7h+33 | | 6x+2=6(x+2) | | w^2+4w=8 | | 11=2-3s | | 5=9-2m | | 8xy+2xy= | | 2x^2-28x+32=0 | | -8+4t=-16 | | -8+4t=16 | | 8(s-0.75)-20=6 | | W^2+5w+4=0 | | 13x+25=5x+153 | | 119-3x=24x+23 | | y=x-8x+6 | | 12b+5=3b | | ln(2x^2-3)=ln(9x-13) | | -4(n-4)=-3n-7 | | 8x-3=28x+2 | | 8x-3=28x+3 | | 14b^2=23b-15 | | 6y+2=-4(2y+2) | | 15e-5=0 | | 13z+9z+16z= | | 2x-3(x-5)=3(3-4x)-2(1-x) | | 9x^2-8x= | | 12=t+1 | | 3x-7(x-5)=2x-13 | | 4p+5=8+3p | | ln(x)+ln(3)=0 | | x-22=-29 |

Equations solver categories